Latitude and Longitude

How do you find a location on the Earth?

Latitude and Longitude

- Map - representation of an area used to show physical features and exact locations

Latitude and Longitude

- Latitude - measuring lines running parallel to the equator
- Also called parallels
- These lines never intersect
- Equator - main reference line of Latitude (0° latitude)

Latitude and Longitude

- The North Pole is 900 N latitude
- The South Pole is 900 S latitude

Latitude and Longitude

- Finding your latitude:
- The altitude (angle) of Polaris is equal to your latitude

Latitude and Longitude

- Longitude - measuring lines that measure distance east and west from the prime meridian
- Also called meridians
- Prime Meridian - main reference line of longitude (0° Longitude)

Latitude and Longitude

- The International Date Line is 1800 east or west of the Prime Meridian

		\pm			5			-37	2		
	\$		2-			2\% ${ }^{3}$	$1 \geq 1$	cess	ω^{\prime}	3	P
							5	1	105		
							11			\cdots	
			<								
			\cdots					S			5
	Comb	bine la	titude	and	longit	ude t	to get a	coor	dinate		

Latitude and Longitude

- Be sure you include direction with both latitude and longitude
- Example: $20^{\circ} 30^{\prime} \mathrm{N}$ and $75^{\circ} 30^{\prime} \mathrm{E}$

Latitude and Longitude

- Subdivisions of Latitude and Longitude
- One degree is divided into 60 minutes (60^{\prime})
- One minute can be divided into 60 seconds ($60^{\prime \prime}$)

Latitude and Longitude

- Time Zones:
- Earth's rotation is the basis for local time
- The Earth rotates 3600 in 24 hours
- Earth rotates on an imaginary axis at 150 per hour
- Earth is divided into 24 (159) time zones

Latitude and Longitude

- Time Zones (continued):
- Each time zone is one hour different
- Each time zone covers 150 of longitude
- There are 6 time zones in the United States

Field Maps
What are the different types of field maps?

Field Maps

- Field - a region with a measurable quantity at every location
- Example: ocean temperature

Field Maps

- Isolines - are lines that are drawn on a field map to connect all of the points on that map that have the same value
- Example: precipitation amounts in inches

Field Maps

- Points represent values of data found at a specific location
- To construct a field map connect the points of equal data
- Do not connect every value... just whole numbers
- Isolines form complete circles or end at the edge of the map

Temperature Values in the United States

Field Maps

- Different Types of Isolines:
- Isotherm - lines that connect equal points of temperature
- Isohyet - lines that connect equal points of rainfall
- Isobar - lines that connect equal points of air pressure
- Contour Line - lines that connect equal points of elevation

Inches of Precipitation

	$0.7-3.0$
\square	$3.1-6.0$
	$6.1-9.0$
\square	$9.1-12.0$
\square	$12.1-15.0$
\square	$15.1-18.0$
\square	$18.1-21.0$
\square	$21.1-24.0$
\square	$24.1-28.0$
	$28.1-35.4$

Isohyet Map

Contour Map

Field Maps

- Gradient (slope) - rate of change from one place to another

$$
\text { Gradient }=\frac{\text { change in field value }}{\text { distance }}
$$

Field Maps

$\begin{aligned} & \text { Gradient }= \text { change in field value } \\ & \text { change in distance }\end{aligned}$
Gradient = 18 inches -6 inches 30 miles

Gradient = 12 inches 30 miles

Gradient $=0.4$ inches $/$ mile

Topographic Maps

How do topographic maps help us interpret our planet?

Topographic Maps

- Topographic Maps (contour map) - commonly used model of the elevation field of the surface of Earth
- Topographic maps show three-dimensional shapes in two dimensions
- Elevation - height above or below sea level

Topographic Maps

- Natural Features - features that are created by nature
- Examples: mountains, hills, lakes, and rivers
- Cultural Features - features that are created by mankind
- Examples: roads, cities, buildings and dams

Topographic Maps

- Contour Lines - lines drawn on a map that connect equal points of elevation

Contour interval $=20 \mathrm{ft}$

Topographic Maps

- Contour Interval - the difference in elevation between two side by side contour lines
- The contour interval is usually found on the map key or legend

Topographic Maps

- Index Contour - lines that are bold and have an elevation labeled
- Example: 200 ft and 300 ft

Topographic Maps

- Gentle Slope - when contour lines are spaced far apart
- Steep Slope - when contour lines are spaced close together

Topographic Maps

- When contour lines cross a river they bend upstream
- Note: rivers flows the opposite direction the contour lines point

Topographic Maps

- Benchmark - a marker that has the exact latitude, longitude, and elevation of that position
- Labeled on a map as BM. X.

Topographic Maps

- Depression Contour Lines - are marked with small lines called hachured lines that are pointed toward the center of a depression
- Allows you to distinguish a hill from a hole

Topographic Maps

- Calculating the Highest Point:

1. Finding the last (highest) contour line on that hill
2. Imagine you drew another line
3. Subtract one from the imaginary line

Topographic Maps

- Contour Line Rules:

1. Contour lines close around hills, basins, and depressions or extend to the edge of the map
2. Contour lines never ever cross
3. Contour lines form V's that point upstream whenever crossing a stream

Topographic Maps

- Topographic Profile - the side view of a geologic feature

Topographic Maps

Creating a Topographic Profile:

1. You need two points on a contour map and a horizontal grid between the two points
2. Transfer the points from the map to the horizontal grid
3. Connect the points with a smooth line to draw the profile
