How do you find a location on the Earth?

 Map - representation of an area used to show physical features and exact locations

- Latitude measuring lines running parallel to the equator
 - Also called parallels
 - These lines never intersect
- Equator main reference line of Latitude (0° latitude)

- The North Pole is 90º N latitude
- The South Pole is 90° S latitude

- Finding your latitude:
 - The altitude (angle) of Polaris is equal to your latitude

 Longitude - measuring lines that measure distance east and west from the prime meridian

Also called meridians

 Prime Meridian - main reference line of longitude (0° Longitude)

• The International Date Line is 180º east or west of the Prime Meridian

- Be sure you include direction with both latitude and longitude
 - Example: 20° 30' N and 75° 30' E

- Subdivisions of Latitude and Longitude
 - One degree is divided into 60 minutes (60')
 - One minute can be divided into 60 seconds (60")

- Time Zones:
 - Earth's rotation is the basis for local time
 - The Earth rotates 360º in 24 hours
 - Earth rotates on an imaginary axis at 15º per hour
 - Earth is divided into 24 (15°) time zones

- Time Zones (continued):
 - Each time zone is one hour different
 - Each time zone covers 15º of longitude
 - There are 6 time zones in the United States

What are the different types of field maps?

- Field a region with a measurable quantity at every location
 - Example: ocean temperature

Cold

 Isolines - are lines that are drawn on a field map to connect all of the points on that map that have the same value

• Example: precipitation amounts in inches

- Points represent values of data found at a specific location
- To construct a field map connect the points of equal data
 - Do not connect every value... just whole numbers
 - Isolines form complete circles or end at the edge of the map

Temperature Values in the United States

- Different Types of Isolines:
 - Isotherm lines that connect equal points of temperature
 - Isohyet lines that connect equal points of rainfall
 - Isobar lines that connect equal points of air pressure
 - Contour Line lines that connect equal points of elevation

• Gradient (slope) - rate of change from one place to another

distance

Gradient = change in field value change in distance

Gradient = 18 inches - 6 inches 30 miles

Gradient = 12 inches 30 miles

Gradient = 0.4 inches/mile

How do topographic maps help us interpret our planet?

- Topographic Maps (contour map) commonly used model of the elevation field of the surface of Earth
 - Topographic maps show three-dimensional shapes in two dimensions
- Elevation height above or below sea level

- Natural Features features that are created by nature
 - Examples: mountains, hills, lakes, and rivers
- Cultural Features features that are created by mankind
 - Examples: roads, cities, buildings and dams

 Contour Lines - lines drawn on a map that connect equal points of elevation

- Contour Interval the difference in elevation between two side by side contour lines
 - The contour interval is usually found on the map key or legend

- Index Contour lines that are bold and have an elevation labeled
 - Example: 200 ft and 300 ft

- Gentle Slope when contour lines are spaced far apart
- Steep Slope when contour lines are spaced close together

- When contour lines cross a river they bend upstream
 - Note: rivers flows the opposite direction the contour lines point

- Benchmark a marker that has the exact latitude, longitude, and elevation of that position
 - Labeled on a map as BM. X.

- Depression Contour Lines are marked with small lines called hachured lines that are pointed toward the center of a depression
 - Allows you to distinguish a hill from a hole

- Calculating the Highest Point:
 - 1. Finding the last (highest) contour line on that hill
 - 2. Imagine you drew another line
 - 3. Subtract one from the imaginary line

- Contour Line Rules:
 - 1. Contour lines close around hills, basins, and depressions or extend to the edge of the map
 - 2. Contour lines never ever cross
 - 3. Contour lines form V's that point upstream whenever crossing a stream

Topographic Profile - the side view of a geologic feature

Creating a Topographic Profile:

- 1. You need two points on a contour map and a horizontal grid between the two points
- 2. Transfer the points from the map to the horizontal grid
- 3. Connect the points with a smooth line to draw the profile